Question

The table below shows data on annual expenditure, x (in dollars), on recreation and annual income, y (in dollars), of 20 families. Use Excel to find the best fit linear regression equation. Round the slope and intercept to the nearest integer.

x          y

2400    41200

2650    50100

2350    52000

4950    66000

3100    44500

2500    37700

5106    73500

3100    37500

2900    56700

1750    35600

1450    37500

2020    36900

3750    48200

1675    34400

2400    29900

2550    44750

3880    60550

3330    52000

4050    67700

1150    20600

Question

The table below gives the average weight (in kilograms) of certain people ages 1–20. Use Excel to find the best fit linear regression equation, where age is the explanatory variable. Round the slope and intercept to two decimal places.

Age     Weight

1          9.2

2          12.0

3          14.2

4          15.4

5          17.9

6          19.9

7          22.4

8          25.8

9          28.1

10        31.9

11        36.9

12        41.5

13        45.8

14        47.6

15        52.1

16        53.5

17        54.4

18        56.7

19        57.1

20        58.0

Question

An economist is studying the link between the total value of a country’s exports and that country’s gross domestic product, or GDP. The economist recorded the GDP and Export value (in millions of $’s) for 30 nations for the same fiscal year. This sample data is provided below.

GDP    Exports

225274            214010

297106            205300

1470543          189700

511685            188300

930808            184300

261974            180500

542857            152000

331360            151100

703318            148400

269115            142900

154027            128970

101848            125927

271392            104968

97980  88546

181876            93763

266641            82414

139535            77731

76381  74824

212411            62118

169385            61143

594857            65205

144020            57241

353487            55861

99688  55691

155857            53762

137955            55400

164110            46322

422231            45940

149899            43284

257349            37922

Question

An economist is trying to understand whether there is a strong link between CEO pay ratio and corporate revenue. The economist gathered data including the CEO pay ratio and corporate revenue for 30 companies for a particular year. The pay ratio data is reported by the companies and represents the ratio of CEO compensation to the median employee salary. The data are provided below. Use Excel to calculate the correlation coefficient r between the two data sets. Round your answer to two decimal places.

CEO Pay Ratio           Corporate Revenue (million $)

275      151007

293      20612

980      29498

336      39286

255      20338

181      25991

315      98334

131      36196

279      63827

224      60328

256      26675

90        25175

356      53525

1407    20764

220      17494

177      64190

316      45760

335      17476

126      33467

288      20142

267      63580

276      22302

137      20094

2433    20430

223      20867

1292    19183

164      22079

145      20478

226      34635

141      27072

Question

In the following table, the age (in years) of the respondents is given as the x value, and the earnings (in thousands of dollars) of the respondents are given as the y value. Use Excel to find the best fit linear regression equation in thousands of dollars. Round the slope and intercept to three decimal places.

x          y

21        42.136

22        24.900

22        13.884

24        29.597

24        30.306

25        42.000

25        40.257

27        38.081

27        29.434

30        50.188

31        38.000

32        22.776

32        45.000

33        52.000

34        39.500

38        60.000

40        51.844

40        39.575

42        57.824

42        42.346

43        35.214

43        42.388

43        41.962

44        42.388

45        45.000

45        40.500

46        46.193

47        48.853

48        52.000

48        52.884

49        36.480

49        40.069

50        46.630

50        40.308

51        20.103

53        42.384

54        30.995

55        56.657

56        42.374

56        52.368

57        69.000

57        64.748

57        52.884

58        42.398

59        40.000

Question

The heights (in inches) and weights (in pounds) of 25 baseball players are given below. Use Excel to find the best fit linear regression equation, where height is the explanatory variable. Round the slope and intercept to two decimal places.

Height Weight

71        186

72        211

73        220

70        165

72        180

72        195

70        175

74        202

78        240

71        170

74        180

73        185

76        257

77        215

76        287

77        220

73        200

76        223

76        200

70        220

75        215

71        195

77        194

75        195

75        225

Question

A market researcher looked at the quarterly sales revenue for a large e-commerce store and for a large brick-and-mortar retailer over the same period. The researcher recorded the revenue in millions of dollars for 30 quarters. The data are provided below. Use Excel to calculate the correlation coefficient r between the two data sets. Round your answer to two decimal places.

E-Commerce   Brick-and-mortar

1074    13.11

1155    13.08

1476    12.9

1548    13.77

1800    13.49

1977    13.83

2057    13.89

1955    13.86

1884    13.86

2193    12.9

2186    13.4

2301    12.72

2280    13.38

2457    12.86

2899    12.46

2663    12.28

3414    12.7

3251    12.83

3602    12.07

3697    12.93

3956    12.09

4349    12.63

4497    12.59

4664    12.46

4497    12.03

4473    11.28

4976    11.55

4853    11.84

5103    11.46

5204    11.91

Question

An amateur astronomer is researching statistical properties of known stars using a variety of databases. They collect the absolute magnitude or MV and stellar mass or M⊙ for 30 stars. The absolute magnitude of a star is the intensity of light that would be observed from the star at a distance of 10 parsecs from the star. This is measured in terms of a particular band of the light spectrum, indicated by the subscript letter, which in this case is V for the visual light spectrum. The scale is logarithmic and an MV that is 1 less than another comes from a star that is 10 times more luminous than the other. The stellar mass of a star is how many times the sun’s mass it has. The data is provided below. Use Excel to calculate the correlation coefficient r between the two data sets, rounding to two decimal places.

Absolute Magnitude V           Stellar Mass

15.71   0.11

4.35     1.09

5.61     0.89

13.28   0.18

16.92   0.09

10.23   0.48

1.52     2.05

11.27   0.52

15.09   0.11

16.32   0.10

13.59   0.18

14.48   0.12

5.95     0.83

9.67     0.52

13.20   0.16

16.06   0.10

16.25   0.11

16.96   0.10

2.53     1.63

13.34   0.48

7.51     0.70

8.27     0.64

11.03   0.35

11.62   0.26

10.05   0.50

13.17   0.16

6.59     0.78

16.46   0.09

5.61     0.96

15.62   0.11

 

Solution

Question

The table below shows data on annual expenditure, x (in dollars), on recreation and annual income, y (in dollars), of 20 families. Use Excel to find the best fit linear regression equation. Round the slope and intercept to the nearest integer.

x              y

2400       41200

2650       50100

2350       52000

4950       66000

3100       44500

2500       37700

5106       73500

3100       37500

2900       56700

1750       35600

1450       37500

2020       36900

3750       48200

1675       34400

2400       29900

2550       44750

3880       60550

3330       52000

4050       67700

1150       20600

Answer: y = 11        x +………………….…………….please follow the link below to purchase the solution at $5

error: ScholarlyAcademia.com !!
×

Hello!

Click one of our contacts below to chat on WhatsApp

× How can I help you?